Digital Communication Systems ECS 452

Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5.2 Binary Convolutional Codes

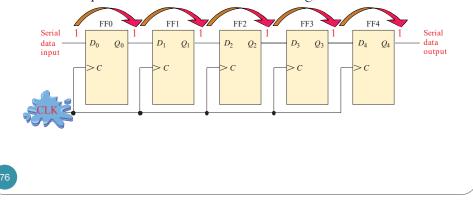
Office Hours: BKD, 6th floor of Sirindhralai building Monday 10:00-10:40 Tuesday 12:00-12:40 Thursday 14:20-15:30

Binary Convolutional Codes

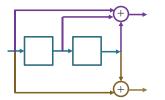
- Introduced by Elias in 1955
 - There, it is referred to as convolutional parity-check symbols codes.
 - Peter Elias received
 - Claude E. Shannon Award in 1977
 - IEEE Richard W. Hamming Medal in 2002
 - for "fundamental and pioneering contributions to information theory and its applications
- The encoder **has memory**.
 - In other words, the encoder is a **sequential circuit** or a **finite-state machine**.
 - Easily implemented by shift register(s).
 - The **state** of the encoder is defined as the contents of its memory.

Binary Convolutional Codes

- The encoding is done on a **continuous** running basis rather than by blocks of *k* data digits.
 - So, we use the terms **bit streams** or **sequences** for the input and output of the encoder.
 - In theory, these sequences have infinite duration.
 - In practice, the state of the convolutional code is periodically forced to a known state and therefore code sequences are produced in a block-wise manner.


74

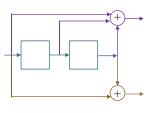
Binary Convolutional Codes

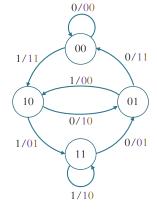

- In general, a rate- $\frac{k}{n}$ convolutional encoder has
 - *k* shift registers, one per input information bit, and
 - *n* output coded bits that are given by linear combinations (over the binary field, of the contents of the registers and the input information bits.
- *k* and *n* are usually small.
- For simplicity of exposition, and for practical purposes, only rate-¹/_n binary convolutional codes are considered here.
 k = 1.
 - These are the most widely used binary codes.

(Serial-in/Serial-out) Shift Register

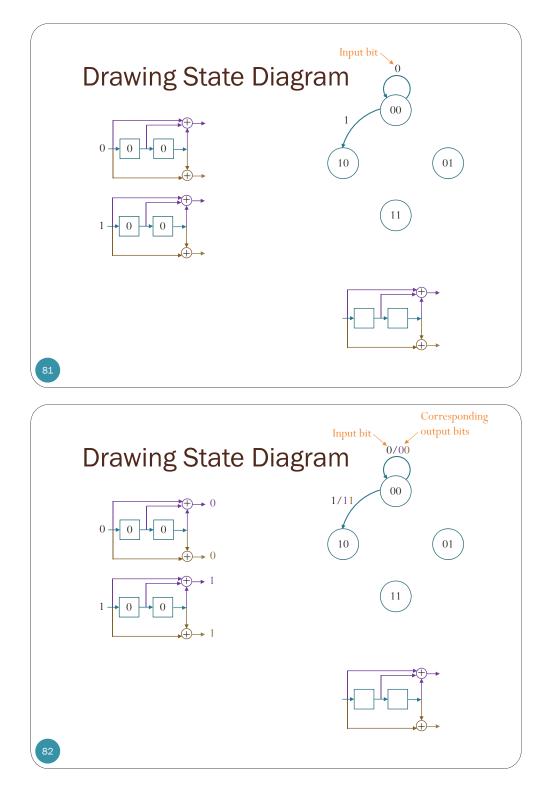
- Accept data serially: one bit at a time on a single line.
- Each clock pulse will move an input bit to the next FF. For example, a 1 is shown as it moves across.
- Example: five-bit serial-in serial-out register.

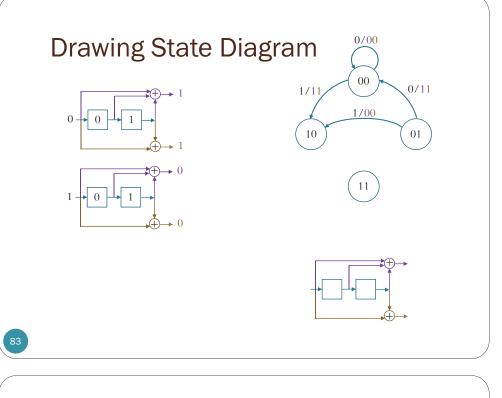
Example 1: *n* = 2, *k* = 1

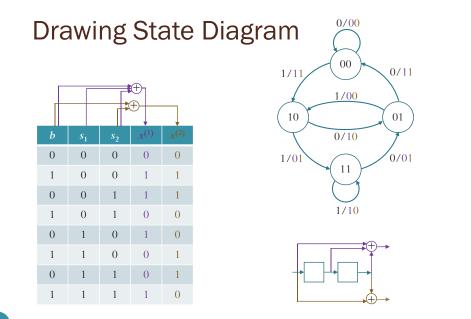

Graphical Representations

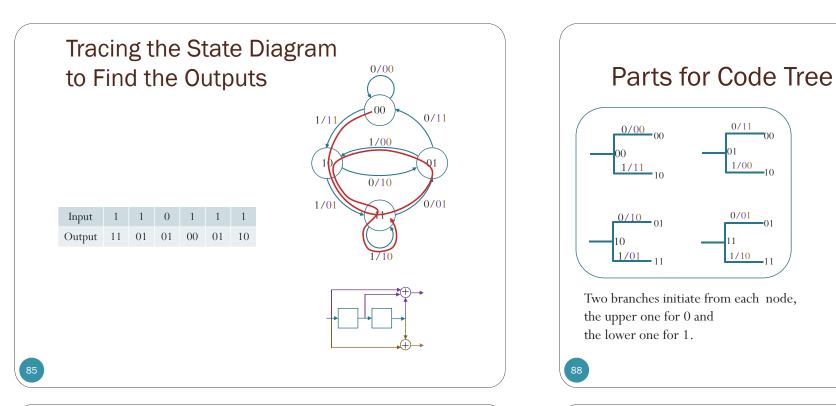

- Three different but related graphical representations have been devised for the study of convolutional encoding:
- 1. the state diagram
- 2. the code tree
- 3. the trellis diagram

78

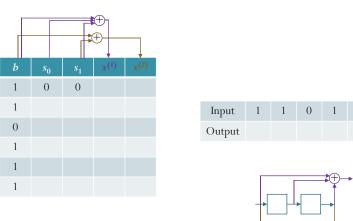

Ex. 1: State (Transition) Diagram

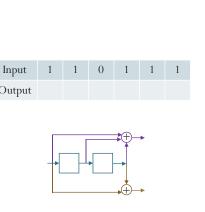

• The encoder behavior can be seen from the perspective of a finite state machine with its state (transition) diagram.

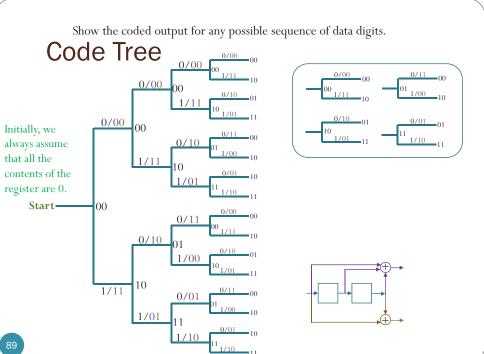




A four-state directed graph that uniquely represents the input-output relation of the encoder.







0/00

00

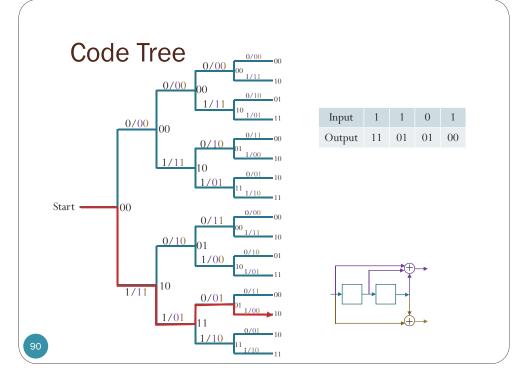
1/00

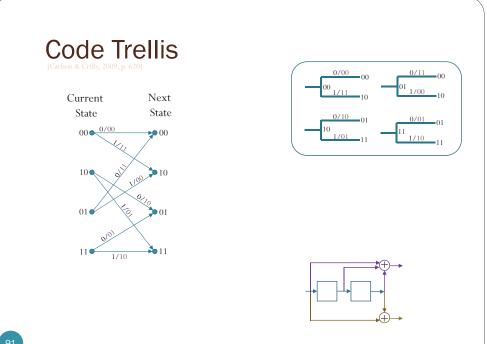
0/10

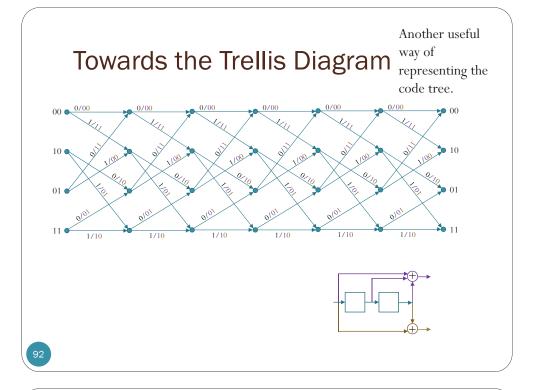
11

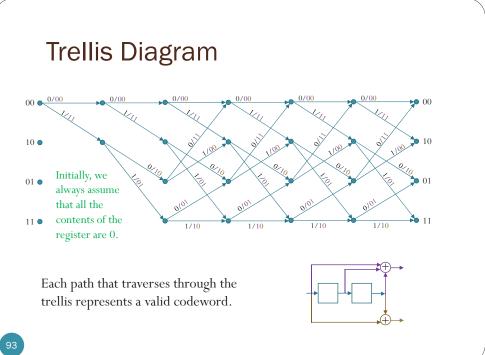
1/10

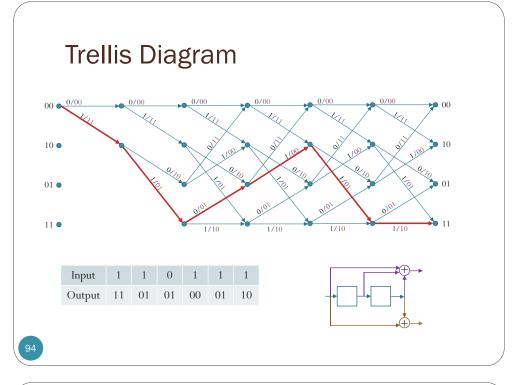
1/11

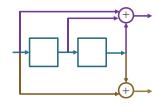

10


1/0


0/11


01


0/01



Direct Minimum Distance Decoding

- Suppose <u>y</u> = [11 01 11].
- Find <u>**b**</u>.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from \mathbf{y} .

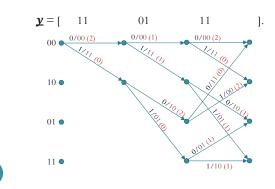
•
$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} d(\mathbf{x}, \mathbf{y})$$



Direct Minimum Distance Decoding

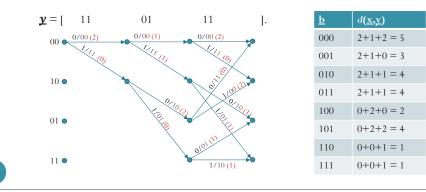
• Suppose <u>y</u> = [11 01 11].

• Find **b**.

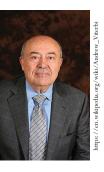

- · ·].
- Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from \mathbf{y} .

For 3-bit message, there are $2^3 = 8$ possible codewords. We can list all possible codewords. However, here, let's first try to work on the distance directly.

Direct Minimum Distance Decoding

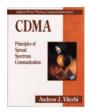

- Suppose <u>y</u> = [11 01 11].
- Find <u>**b**</u>.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from \mathbf{y} .

The number in parentheses on each branch is the branch metric, obtained by counting the differences between the encoded bits and the corresponding bits in \boldsymbol{y} .


Direct Minimum Distance Decoding

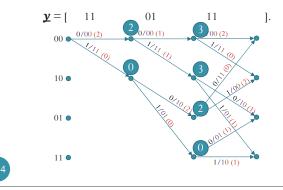
- Suppose <u>y</u> = [11 01 11].
- Find **<u>b</u>**.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

Viterbi decoding


- Developed by Andrew J. Viterbi
 - Also co-founded Qualcomm Inc.
- Published in the paper "Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm", IEEE Transactions on Information Theory, Volume IT-13, pages 260-269, in April, 1967.

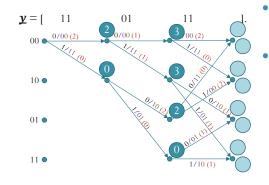
Andrew J. Viterbi

- 1991: Claude E. Shannon Award
- 1952-1957: MIT BS & MS
 - Studied electronics and communications theory under such renowned scholars as Norbert Wiener, Claude Shannon, Bruno Rossi and Roberto Fano.
- 1962: Earned one of the first doctorates in electrical engineering granted at the University of Southern California (USC)
 - Ph.D. dissertation: error correcting codes
- 2004: USC Viterbi School of Engineering named in recognition of his \$52 million gift



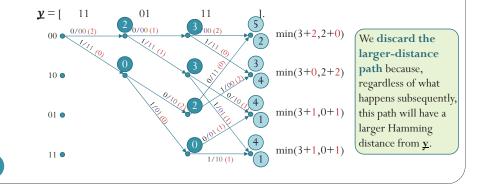
Viterbi Decoding: Ex. 1

- Suppose <u>y</u> = [11 01 11].
- Find **<u>b</u>**.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from \mathbf{y} .

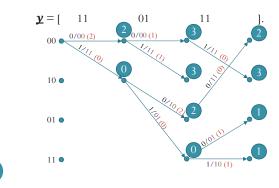


Each **circled number** at a node is the running (cumulative) path metric, obtained by summing branch metrics (distance) up to that node. Here, it is simply the cumulative distance.

Viterbi Decoding: Ex. 1

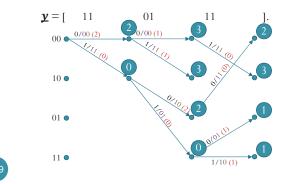

- Suppose <u>y</u> = [11 01 11].
- Find **<u>b</u>**.
 - Find the message $\hat{\underline{\mathbf{b}}}$ which corresponds to the (valid) codeword $\hat{\underline{\mathbf{x}}}$ with minimum (Hamming) distance from $\underline{\mathbf{y}}$.

- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.


Viterbi Decoding: Ex. 1

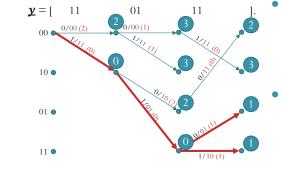
- Suppose $\underline{y} = [11 \ 01 \ 11].$
- Find <u>**b**</u>.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{X}}$ with minimum (Hamming) distance from \mathbf{y} .

Viterbi Decoding: Ex. 1


- Suppose <u>y</u> = [11 01 11].
- Find **<u>b</u>**.
 - Find the message <u>b</u> which corresponds to the (valid) codeword <u>x</u> with minimum (Hamming) distance from <u>y</u>.

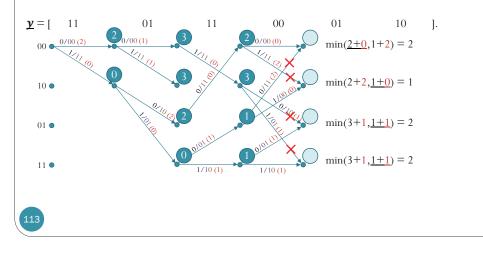
- For the last column of nodes, each of the nodes has two branches going into it.
- So, there are two possible cumulative distance values.
- We **discard the largerdistance path** because, regardless of what happens subsequently, this path will have a larger Hamming distance from <u>y</u>.

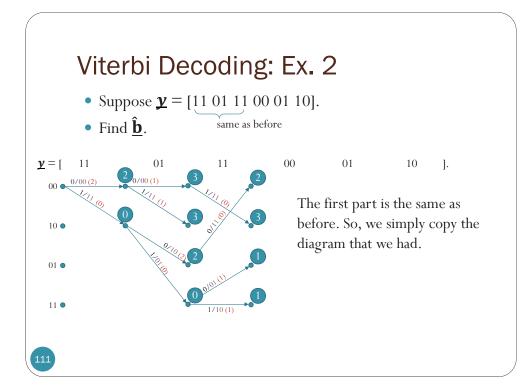
Viterbi Decoding: Ex. 1


- Suppose <u>y</u> = [11 01 11].
- Find **<u>b</u>**.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from \mathbf{y} .

Note that we keep exactly one (optimal) **survivor path** to each state. (Unless there is a tie, then we keep both or choose any.)

Viterbi Decoding: Ex. 1

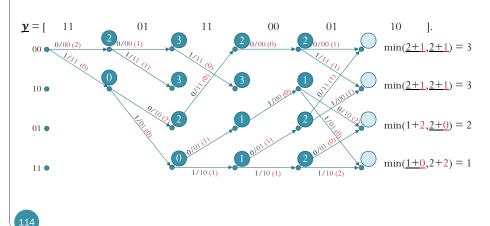

- Suppose <u>y</u> = [11 01 11].
- Find **<u>b</u>**.
 - Find the message $\hat{\mathbf{b}}$ which corresponds to the (valid) codeword $\hat{\mathbf{x}}$ with minimum (Hamming) distance from \mathbf{y} .

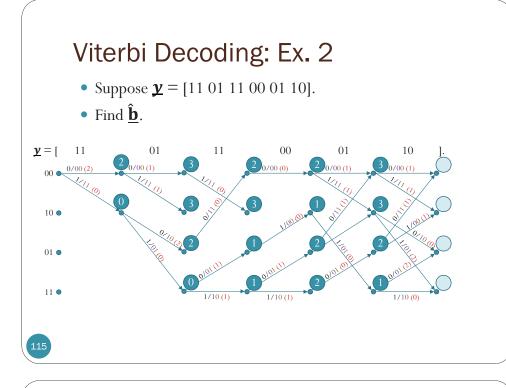


- So, the codewords which are nearest to <u>y</u> is [11 01 01] or [11 01 10].
- The corresponding messages are [110] or [111], respectively.

Viterbi Decoding: Ex. 2

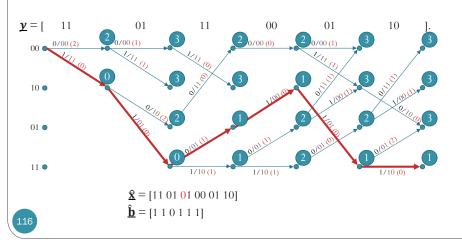
- Suppose **y** = [11 01 11 00 01 10].
- Find <u>**b**</u>.





Viterbi Decoding: Ex. 2

• Suppose <u>y</u> = [11 01 11 00 01 10].


• Find <u>**b**</u>.

Viterbi Decoding: Ex. 2

- Suppose $\underline{y} = [11 \ 01 \ 11 \ 00 \ 01 \ 10].$
- Find **<u>b</u>**.

Viterbi Decoding: Ex. 3 • Suppose $\underline{v} = [01 \ 10 \ 11 \ 10 \ 00 \ 00].$ 00 Received bits: 01 00 Optimal path $(2) = \min(2 + 0, 2 + 2)$ 2 0/00 2 0/00 0/00 0/00 2 0/00 1 0/00 1/11 1/11 1/11 $(3) = \min(2 + 2, 3 + 0)$ 2 0/10 / 1/00 2 0/10 / 1/00 2 0/10 / 1/00 2 1/00. $(3) = \min(2 + 1, 3 + 1)$ 1/01 0/01 0/01 0/01 $(3) = \min(2 + 1, 3 + 1)$ 1/10 1/10 1/10 $\hat{\mathbf{x}} = [11\ 10\ 11\ 00\ 00\ 00]$ $\hat{\mathbf{b}} = [1\ 0\ 0\ 0\ 0\ 0]$

References: Conv. Codes

- Lathi and Ding, *Modern Digital and Analog Communication Systems*, 2009
 - [TK5101 L333 2009]
 - Section 15.6 p. 932-941
- Carlson and Crilly, *Communication Systems: An Introduction to Signals and Noise in Electrical Communication*, 2010
 - [TK5102.5 C3 2010]
 - Section 13.3 p. 617-637

